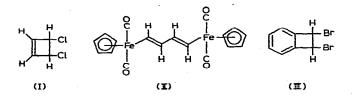
REACTIONS OF ALKALI METAL DERIVATIVES OF METAL CARBONYLS

XII*. THE NON-OCCURRENCE OF RING OPENING IN THE REACTION OF SODIUM CYCLOPENTADIENYLDICARBONYLFERRATE WITH 1,2-DIBROMOBENZOCYCLOBUTENE

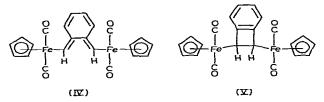

R. B. KING, A. EFRATY** and W. C. ZIPPERER Department of Chemistry, University of Georgia, Athens, Georgia (U.S.A.) (Received November 23rd, 1971)

SUMMARY

The reaction of 1,2-dibromobenzocyclobutene with NaFe(CO)₂C₅H₅in tetrahydrofuran solution gives the deep yellow bimetallic derivative $C_8H_6[Fe(CO)_2-C_5H_5]_2$. The proton NMR spectrum and the lack of reactivity towards dienophiles such as tetracyanoethylene show $C_8H_6[Fe(CO)_2C_5H_5]_2$ to be a benzocyclobutene rather than an *o*-xylylene derivative. This indicates that 1,2-dibromobenzocyclobutene, unlike 3,4-dichlorocyclobutene, does not undergo opening of the cyclobutene ring upon reaction with NaFe(CO)₂C₅H₅.

INTRODUCTION

The reaction between 3,4-dichlorocyclobutene (I) and NaFe(CO)₂C₅H₅ has recently been shown²⁻⁴ to result in ring opening to give the bimetallic butadiene derivative C₄H₄[Fe(CO)₂C₅H₅]₂ (II). The related reaction between 1,2-dibromobenzocyclobutene*** (III)⁵ and NaFe(CO)₂C₅H₅ has now also been found to give a bimetallic derivative. However, evidence presented in this paper indicates that this bimetallic derivative C₈H₆[Fe(CO)₂C₅H₅]₂ is not the *o*-xylylene complex (IV) formed by a ring opening reaction but instead is the benzocyclobutene complex (V).



* For Part XI of this series see ref. 1.

** Postdoctoral research associate, 1968–1971. Present address: School of Chemistry, Rutgers University, New Brunswick, New Jersey 08903 (U.S.A.).

*** Chem. Abstr. name: 7,8-dibromobicyclo[4.2.0]octa-1,3,5-triene.

J. Organometal. Chem., 38 (1972)

EXPERIMENTAL

A nitrogen atmosphere was routinely provided for the following operations: (a) carrying out reactions; (b) admitting to evacuated vessels; and (c) handling filtered solutions of organometallic derivatives. The 1,2-dibromobenzocyclobutene (III) was prepared from $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo-o-xylene and sodium iodide in acetone solution according to the published procedure⁵.

Reaction of $NaFe(CO)_2C_5H_5$ with 1,2-dibromobenzocyclobutene (III)

A solution of 10.5 g (30 mmoles) of $[C_5H_5Fe(CO)_2]^{\frac{5}{2}}$ in 200 ml of tetrahydrofuran (redistilled over LiAlH₄) was stirred with an excess (1.5 g, 65 mmoles) of sodium metal as a 3% amalgam for 2 h at room temperature. After removal of excess sodium amalgam the solution of NaFe(CO)₂C₅H₅ was cooled to -78° and treated with a solution of 7.5 g (28.5 mmoles) of 1,2-dibromobenzocyclobutene in 50 ml of the redistilled tetrahydrofuran. The resulting reaction mixture was stirred for 3 h at -78° and finally for an additional 13 h at room temperature. Solvent was then removed at $50^{\circ}/40$ mm. The residue was extracted with three 100 ml portions of a 1/3 mixture of dichloromethane and hexane. The filtered extracts were concentrated and then chromatographed on a 2.5×70 cm alumina column. The chromatogram was first eluted with a 1/3 mixture of dichloromethane and hexane to remove a very pale yellow band containing some unchanged 1,2-dibromobenzocyclobutene (III). The next band, an intense yellow band, was eluted with the same dichloromethane/ hexane mixture. Concentration of this eluate at $25^{\circ}/40$ mm gave 3.5 g (27% yield) of deep yellow crystalline $C_8H_6[Fe(CO)_2C_5H_5]_2$, which was removed by filtration. The analytical sample, m.p. 166-167°, was purified by several recrystallizations from mixtures of dichloromethane and hexane. (Found: C, 57.9, 58.1; H, 3.4, 3.4; Fe, 24.3, 24.5; O, 13.9, 14.2. C₂₂H₁₆Fe₂O₄ calcd.: C, 57.9; H, 3.5; Fe, 24.5; O, 14.0%)

Infrared spectrum (Perkin-Elmer model 621 spectrometer; grating optics)

Cyclohexane solution : v(CO) frequencies at 2007 (vs), 1960 (vs), and 1947 (vs) cm⁻¹.

Proton NMR spectra (Perkin-Elmer Hitachi R-20 spectrometer; 60 Mc)

(a). 1,2-Dibromobenzocyclobutene (III). Multiplets in CDCl₃ solution at τ 2.95 (at least 12 discernible lines) and τ 4.73 (5 discernible lines) corresponding to the four benzenoid protons and the two saturated aliphatic protons, respectively.

(b). $C_8H_6[Fe(CO)_2C_5H_5]_2$ (V). Resonances in CDCl₃ solution at τ 3.39 (broad, unresolved), τ 5.42 (singlet), and τ 6.21 (singlet) of relative intensities 4/10/2 corresponding to the four benzenoid aromatic protons, the ten protons of the two *pentahapto*-cyclopentadienyl rings, and the two saturated aliphatic protons, respectively.

J. Organometal. Chem., 38 (1972)

Mass spectrum (Perkin-Elmer Hitachi RMU 6 mass spectrometer)

The following ions were observed in a mass spectrum of $C_8H_6[Fe(CO)_2-C_5H_5]_2$ (V) taken on a sample introduced at 180° into a 220° chamber (relative intensities are given in parentheses): $(C_5H_5)_2Fe_2(CO)C_8H_6^+$ (3), $(C_5H_4)_2Fe_2C_8H_6^+$ (13), $C_{10}H_8FeC_8H_6^+$ (5), $C_5H_5Fe(CO)_2C_8H_6^+$ (43), m/e 262 (5), $C_5H_5Fe(CO)C_8H_6^+$ (30), $(C_5H_5)_2Fe_2^+$ (4), $C_5H_5FeC_8H_6^+$ (100), $C_5H_5Fe_2C_3H_3^+$ (7), $C_5H_5FeC_6H_4^+$ (5), $(C_5H_5)_2Fe^+$ (~72), $C_5H_5Fe(CO)_2^+$ (13), $C_{13}H_{10}^+$ (13), $C_{13}H_9^+$ (23), $C_5H_5FeCO^+$ (20), $C_{11}H_9^+$ (11), $C_{10}H_{10}^+$ (8), $C_5H_5Fe^+$ (74), $C_9H_7^+$ (5), Fe_2^+ (4), $C_8H_6^+$ (87), $C_3H_3Fe^+$ (9), $C_3H_2Fe^+$ (5), C_3HFe^+ (5), $C_6H_4^+$ (27), $C_5H_6^+$ (22), $C_5H_5^+$ (22), $C_5H_3^+$ (12), Fe^+ (32), $C_4H_3^+$ (13), $C_4H_2^+$ (13), $C_3H_4^+$ (10), $C_3H_3^+$ (30). Under these conditions neither the molecular ion nor its doubly charged counterpart was observed.

Reactions of $C_8H_6[Fe(CO)_2C_5H_5]_2(V)$

(a). Metal carbonyls. Reaction of $C_8H_6[Fe(CO)_2C_5H_5]_2$ (V) with excess Fe-(CO)₅ or $C_5H_5Co(CO)_2$ in boiling octane for ≈ 18 h failed to give any new metal carbonyl derivatives.

(b). Tetracyanoethylene. Reaction of equimolar quantities of $C_8H_6[Fe(CO)_2-C_5H_5]_2(V)$ and tetracyanoethylene in boiling benzene for 4 h gave a mixture of unreacted $C_8H_6[Fe(CO)_2C_5H_5]_2(V)$ and $[C_5H_5Fe(CO)_2]_2$ after chromatography.

(c). Maleic anhydride. Reaction of equimolar quantities of $C_8H_6[Fe(CO)_2-C_5H_5]_2$ (V) and maleic anhydride in boiling benzene for 3 h gave only unreacted $C_8H_6[Fe(CO)_2C_5H_5]_2$ (V) after chromatography.

(d). Diethyl azodicarboxylate. Equimolar quantities of $C_8H_6[Fe(CO)_2C_5H_5]_2$ (V) and diethyl azodicarboxylate failed to react in tetrahydrofuran at room temperature for 21 h as indicated by the infrared spectrum of the reaction mixture.

(e). Triphenylphosphine. Reaction of $C_8H_6[Fe(CO)_2C_5H_5]_2$ (V) with three equivalents of triphenylphosphine either in boiling octane or in cyclohexane at room temperature in the presence of ultraviolet irradiation gave only $[C_5H_5Fe(CO)_2]_2$.

DISCUSSION

The following observations indicate that the $C_8H_6[Fe(CO)_2C_5H_5]_2$ formed from 1,2-dibromobenzocyclobutene (III)⁵ and NaFe(CO)_2C_5H_5 is not the *o*-xylylene complex (IV) but instead has structure (V) with retention of the bicyclic benzocyclobutene system:

- (1). The proton NMR spectrum of $C_8H_6[Fe(CO)_2C_5H_5]_2$ has a similar pattern to that in the starting material 1,2-dibromobenzocyclobutene (III) except for the expected upfield shifts arising from the substitution of iron for bromine. The apparent singlet at τ 6.21 assigned to the two protons of (V) in the cyclobutene ring also has a chemical shift outside the normal range for uncomplexed olefinic protons as would be present in the *o*-xylylene derivative (IV).
- (2). Reaction of $C_8H_6[Fe(CO)_2C_5H_5]_2$ with the very strong dienophile tetracyanoethylene in boiling benzene does not result in the formation of an adduct but instead in the recovery of some unchanged $C_8H_6[Fe(CO)_2C_5H_5]_2$. An o-xylylene complex of structure (IV) has two pairs of conjugated carbon-carbon double bonds and thus should be very reactive towards a dienophile as strong as tetracyanoethylene. The complex $C_8H_6[Fe(CO)_2C_5H_5]_2$ was also unreactive towards the dienophiles maleic anhydride and diethyl azodicarboxylate.

J. Organometal. Chem., 38 (1972)

The failure of 1,2-dibromobenzocyclobutene (III) to undergo ring opening upon reaction with NaFe(CO)₂C₅H₅ to form an *o*-xylylene complex (IV) may be attributed to the fact that formation of the *o*-xylylene complex (IV) from (III) would result in the destruction of the benzenoid aromatic system in (III).

The structure (V) for the $C_8H_6[Fe(CO)_2C_5H_5]_2$ product actually formed in the reaction between 1,2-dibromobenzocyclobutene and NaFe(CO)_2C_5H_5, however, is also unusual in being the first known compound with two transition metals σ -bonded to a pair of saturated vicinal carbon atoms of a hydrocarbon system.

The analogous reactions of the less nucleophilic⁷ sodium salts NaMn(CO)₅ and NaM(CO)₃C₅H₅ (M=Mo and W) with 1,2-dibromobenzocyclobutene in tetrahydrofuran solution were also investigated. However, no compounds analogous to (V) were isolated from any of these reactions. Instead these reactions resulted only in coupling to give Mn₂(CO)₁₀ and $[C_5H_5M(CO)_3]_2$ (M=Mo and W), respectively.

ACKNOWLEDGEMENT

We are indebted to the Petroleum Research Fund for the partial support of this work under Grant 2838-A1,3.

REFERENCES

- 1 R. B. King and A. Effraty, J. Fluorine Chem., 1 (1971) 283.
- 2 M. W. Churchill, J. Wormald, W. P. Giering and G. F. Emerson, Chem. Commun., (1968) 1217.
- 3 R. E. Davis, Chem. Commun., (1968) 1218.
- 4 M. R. Churchill and J. Wormald, Inorg. Chem., 8 (1969) 1936.
- 5 M. P. Cava and D. R. Napier, J. Amer. Chem. Soc., 79 (1957) 1701.
- 6 R. B. King, Organometal. Syn., 1 (1965) 114.
- 7 R. E. Dessy, R. L. Pohl and R. B. King, J. Amer. Chem. Soc., 88 (1966) 5121.

J. Organometal. Chem., 38 (1972)